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LE’ITER TO THE EDITOR 

Percolation threshold of a random array of discs: a numerical 
simulation 

Elisabeth Charlaix 
LHMP, Ecole SupCrieure de Physique et Chimie Industrielles, 10 rue Vauquelin, F-75231 
Paris Cedex 05, France 

Received 19 March 1986 

Abstract. We have evaluated numerically the percolation threshold of a 3~ assembly of 
widthless monodisperse discs (radius R, number per unit volume N) in terms of the 
quasi-invariant NR3. The value obtained is consistent with previous estimates. This model 
should apply to the permeability problem of fractured rocks. 

Several attempts have been made to apply percolation theory to the hydrogeology of 
weakly fractured rocks, when the number of fractures is not large enough to create a 
well connected network inside the rock volume. 

Computer simulations have been performed to relate the connectivity in random 
arrays of elements to fractured rock permeability, treating the fractures as random 
lines [ 1,2] in two dimensions and as discs [ 13 or cracks [3] in three dimensions. Wilke 
et a1 [4], modelling fractures as widthless unit squares on a cubic lattice, verified that 
the problem corresponds to the same universality class as usual bond percolation and 
this general result obtained in other domains for that class of problem should apply 
to fractured rock hydrology. 

Further attention was given to the determination of permeability thresholds. These 
are of practical importance as a basis for probabilistic analysis in problems dealing 
with waste storage in fractured rocks [5]. More generally, the homogenisation tech- 
niques fail to describe the transport properties in the neighbourhood of the permeability 
threshold. 

A model of random widthless discs was discussed by Charlaix and co-workers 
[6,7] and it was shown that the percolation threshold can be given by a critical value 
( N R 3 ) ,  of the dimensionless number NR3, N being the number of discs of radius R 
by unit volume. A numerical value of ( N R 3 ) ,  was estimated from the properties of 
the ‘quasi-invariants’ of percolation as the critical coordination or critical excluded 
volume (to be defined later). 

After describing the recent developments on the existence and numerical values of 
quasi-invariants, we present a Monte Carlo simulation of a random system of widthless 
discs; the percolation threshold is determined using a finite-size scaling technique. 

The near invariance at percolation threshold p c  of critical quantities such as the 
critical coordination for bond percolation (zpCb = 2 ( 2 ~ ) ,  1.5 ( 3 ~ ) )  or the critical volume 
fraction for site percolation (@ =fp,, = 0.44 (zD), 0.15 ( 3 ~ ) )  was first established [8] on 
regular lattices with nearest-neighbour interactions. (Here z is the coordination of the 
lattice andf is the packing fraction of spheres in contact.) The critical volume fraction 
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was also shown to be a good invariant parameter to characterise the percolation 
threshold of random mixtures of hard core objects [9]. 

For percolation of overlapping objects in a continuous medium, Pike and Seager 
[8] introduced the mean number of intersections, B, as a generalisation to continuous 
media of the effective coordination zpb of a bond problem (zpb is also the mean number 
of active bonds per site). However the numerical value of B, is not the same as the 
previous one: Bc=2.7 for spheres ( 3 ~ )  and 4.5 for discs ( 2 ~ ) .  Further studies on 
regular lattices but with longer range interactions (i.e. larger z)  showed increased 
numerical values of zp& in bond percolation [7], but always below 2.7 ( 3 ~ )  and 4.5 ( 2 ~ ) .  

Ottavi [lo] showed that a bond percolation problem can be mapped onto a site 
percolation on a ‘covering lattice’, the coordinations being related by zb = 22, - 2. 
Similarly, continuous percolation of overlapping objects is a site percolation problem 
on an infinite coordination network. Ottavi proposed a new criterion for both site and 
bond percolation on lattices: 

which accounts for the values of zpC found in high coordination networks and con- 
tinuous sphere (discs) percolation. A similar criterion was independently proposed 
by Roberts [ll]. 

Balberg er a1 (see [ 121) used the mean excluded volume (Vex)  (or area (Aex) )  as an 
invariant parameter for the percolation of overlapping objects. These quantities are 
identical to B but are expressed in terms of geometrical parameters. For objects of 
simple shape, they showed that the excluded volume can account for anisotropic 
percolation once its critical value is known for the isotropic system. However, this 
latter is shape dependent and is maximum for isotropic objects: discs in 2 ~ ,  spheres 
in 3 ~ .  Using objects of variable shape, Balberg [13, 141 found a general percolation 
threshold criterion for a continuous isotropic system of convex overlapping objects: 

3.2 < ( (Aex) ) ,  < 4.5 

0.7 < (( Vex)),  < 2.8 

(2D) 

(3D). 

Our simulation is performed on a VAx750 computer and uses finite-size scaling 
techniques on cubic samples of size L (4-16); the parameter of percolation is the 
number of discs N per unit volume. 

The percolation of a sample is decided by the following procedure: the number 
of discs centred in each given unit cube is chosen at random according to a Poisson 
law; the discs have the same unit diameter and are centred and oriented randomly. 
Intersections are searched in the present and neighbouring unit cubes. Periodic 
conditions are assigned on the six faces and percolation is looked for only between 
two given opposite faces (i.e. in a fixed direction). With this method the total number 
of discs in the sample is not constant but the standard deviation is not larger than 2%. 
This technique is similar both to the usual simulations on lattices where each bond or 
site is decided separately, and to the possible simulations of rock sites where the total 
number of fractures may not be known but a fracture density may be estimated from 
geostatistical analysis [6]. 



Letter to the Editor 

For each size L, about 2000 realisations have been performed. The finite-size 
percolation threshold N,(L) (defined as giving a f probability of percolation) and the 
standard root mean square deviation AN( L )  are given in table 1. 

Table 1. The percolation threshold N J L )  for a cube of size L and its root mean square 
deviation A N ( L ) .  

L N J L )  A N ( L )  

4 1.7292*0.0113 0.3627 
6 1.6074 * 0.0085 0.2412 
8 1.5554*0.0074 0.1743 

10 1.5450* 0.0066 0.1383 
12 1.5364*0.0059 0.1193 
16 1.5187 * 0.0051 0.0785 

One observes that N,(L) decreases as the size of the sample increases. Thus for a 
given density N, the larger the sample is, the higher are the chances of finding a 
continuous path. This can be of interest in the statistical analysis of sites with fracture 
densities below the percolation threshold. 

At large L values, N J L )  converges towards the infinite percolation threshold N, 
with a first-order term in L-””, v being the universal exponent of percolation for the 
correlation length which also describes the scaling of the standard deviation: A N ( L )  = 
WL-””. A log-log plot of A N ( L )  against L gives v =0.907*0.05, in good agreement 
with the result obtained by Wilke er a1 [4]. However, the accuracy of the present work 
is not sufficient to study, as has been done in [4], the regular drift of the finite-size 
exponent v ( ( L ,  + L 2 ) / 2 )  obtained from two successive values AN(&) and AN(L2) .  

The main purpose of this letter is the determination of the percolation threshold 
N,. It is usually determined by extrapolating towards L = CO the variation of N,(L) 
with L-’I”. However, in our range of sizes Y has not yet reached its asymptotic value. 
Instead we consider the variation of N,( L )  with AN( L). Since AN( L )  and N,( L )  - N, 
both vary as L-’I” at large L, we take N, equal to the limit of N J L )  as A N ( L )  goes 
to zero. A parabolic fit of the data (figure 1) gives the value N,= 1.48*0.02. 
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Figure 1. Variation of the finite percolation threshold N J L )  against standard deviation 
A N ( L )  for L = 4, 6, 8, 10, 12, 16. A quadratic fit (full curve) gives the infinite percolation 
threshold N,.  
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The discs’ radii being b, this value corresponds to a critical mean excluded volume 
(or mean number of intersections per disc): 

( N (  Vex)) ,  = 7r2N,R3 = 1.80. 

This value agrees with the Balberg criterion (1 )  and is not very far from that found 
by Robinson [2] for the percolation of randomly centred unit squares oriented along 
three orthogonal directions (( Vex), = 2.09). 

Thus the excluded volume theory gives reliable numerical predictions for the 
permeability threshold of random monodisperse cracks, taking into account the size 
dependence. Further developments will deal with anisotropic systems (in which the 
excluded volume criterion is expected to apply) and with the important problem of 
multiple size fractures. 

I have had many helpful discussions with E Guyon, J P Hulin and the ESPCI porous 
media group and I thank Robert Cantiani and Caroline Giordano for their help in the 
numerical simulation. 

I would like 1 7 Lie GRECO ‘numerical experimentation’ group for letting 
us use its compur =s at the Physics Laboratviy of the Ecoie Normale 
SupCrieure, Paris where : .sent numerical simulation was performed. 
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